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ANALYSIS OF MOTIONS AND LOADS ON A
CATAMARAN VESSEL IN WAVES

Riaan van ‘t Veer

Delft University of Technology, The Netherfands

‘presented and compared wzth numencai resu/ts: "

-A3D Rankmerpane ‘method hasbeen dawgned to calculate the steadyand unsfeadyveiac:ty"potentta[ around 2 twm Fulfvessel.
- Recently;:modéf tests have-been performed-with & Catamaran vessal in: head waves: Resu/ts fromy thesermodef experiments will be»

1 INTRODUCTION

The strip theory is a widely used method to calculate the
motions of and loads on a vessel sailing in waves. The method
gives in most cases satisfactory results while the calculation
effort is minimal. However, since the strip theory is a 2D
method the results become less satisfactory if 3D effects wil
get more pronounced, as can be expected by catamaran
vessels. A typical 3D effect is the interaction of waves
generated by the two hulls of the catamaran.

Itis understood that for high forward speeds these interaction
effects vanish since the waves generated by one hull cannot
reach the other hull.

In a 3D Rankine panel method the interaction effects are
automatically included since each panef will have its influence
on all the other panels. Another important point is that a 3D
panel method can predict the seascape around the vessel,
which gives the possibility to look at for example the midship
structure clearance or the wash behind the vessel.

In the next section the mathematical description of the
Rankine panel method is presented and in Section 3 the
numerical implementation is described. In Section 4 model
test results are presented and compared with numerical
resuits of the 3D Rankine panel method (Seascape) and with
numerical results of a 2D strip theory program (Asap).

2 THE MATHEMATICAL MODEL

The mathematical model is expressed in a right handed
Cartesian coordinate system attached to the vessel. The x-
axis is pointing forward in the direction of the forward speed
U of the vessel. The y-axis is pointing to port side and the z-
axis is pointing upwards.

The flow is assumed to be incompressible and irrotational and
can therefore be described by a velocity potential satisfying
the Laplace equation AW(Z,:) = 0in the whole fluid domain.To
solve the flow problem a boundary value method is used,
thus flow conditions have to be prescribed on each boundary.
The boundaries of the flow domain are the underwater part
of the hull surface, the free surface and the sea bottom. If the
water depth is assumed to be infinite the sea bottom can be
removed from the problem. A normal vector on a boundary
surface is pointing into the fluid domain.

2.1 The exact boundary conditions
On the actual hull surface 8 the boundary condition that no
water can penetrate the hull surface must be fulfilled, thus
M(En) _da
an ot
Equation (1)

on B

where & is the oscillatory displacement vector of the hull,
which is zero if the vessel is sailing in otherwise undisturbed
water.On the free surface the dynamic boundary condition
has to be satisfied (the pressure on the water surface equals
the atmospheric pressure), and the kinematic boundary
condition has to be satisfied (the velocity of the water
particles is tangential to the wave surface). Satisfying both
conditions results in a non linear free surface condition on

the yet unknown free surface elevation z=¢(x,¢),
¥, +20H- VY, +2VE-V(TE T+, =0
Equation (2)

The wave elevation is given by the dynamic boundary
condition,

(D = ~0p, + Lyw.vw - Ly?)
g 2 2
Equation (3)

The boundary value problem governed by the Equations (1)
and (2) is highly non linear and cannot be solved at once.
Seeking a linear set of equations to solve the boundary
conditions are linearised. With the assumption that the flow
disturbance by the vessal is relatively small, the linearisation
is allowed.

2.2 The linearised boundary conditions

To carry out the linearisation process the overall velocity
potential is written as a summation of three velocity
potentials, that is

WX,y = O(x) + §(3) + 9(X.0)
Equation (4)

The base flow ¢(3) is the double body flow, about which
the problern will be linearised. The steady velocity potential
¢(%) is related to the ship resistance problem and the

unsteady velocity potential ¢(x,r) is related to the ship
motion problem. These two potentials are assumed to be
independent of each other, which makes it possible to solve
the steady and unsteady problem separately.

The exact free surface boundary condition is found by
substitution of Equation (4) in Equation (2). The result is a
non linear equation in ¢ and ¢ on an unknown free surface.
The first step in the linearisation procedure is to remove the
non linearity of ¢ and @ leading to a linear equationon z =
(. The next step is to apply a Tayior expansion to express the
boundary condition on z = 0. The last step is separation of
the steady and unsteady terms, leading to a steady and
unsteady free surface condition.
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The linearied steady free surface boundary condition on
z=01s,

Vo-V(VO - V) + VD - V(VP . V) - VO- Vo +

_gm =

l\)'.——

% V(YO VfD)—-é—(Vdid)—Uz)(dJ: +0.2)
Equation (5)
with the steady wave elevation,

{0 = ——I—(V®-V¢+1V¢.V¢_1U2)
4 2 2

Equation (6)

The linearised unsteady free surface boundary condition on
is,

~8Ppy = Oty +2VP Vo, + VO V(Vd)-Vgpk)+%quk V(Vo- Vo) -

1
b (o +VCD~Vgok)—E(V®~Vd>—U2)(g(Pka + QOtegse)
k=1,..,7
Equation (7)

where k=1,...,6 represent the modes of oscillation, the
radiation potentials, and where k=7 represents the diffraction
potential. The unsteady wave elevation on z = 0 can be
written as,

1 .
{(xty= —-—g(qp, +Vd-Vo)
Equation (8)

On the (mean) hull surface 7 the steady flow condition is,
J0(x)
on

=0 on g

Equation (9)

This hull surface is known so no linearisations have to be
carried out.

in the unsteady problem the huli boundary condition has to
be imposed on the actual hull surface B which is only known
after the problem has been solved. If the oscillatory
displacement vector & is used the hull boundary condition,
Equation (1), reads as,

do(x.t) da -

—_—— = =-V(®+
= P (d+9)-n onB
Equation (10)

Equation (10) is linearised using the procedure described by
Timman and Newman (1962).

a0,

=i +m k=1,..6 on g
Equation (11)

The diffraction potential exist by virtue of the incoming wave.
The boundary condition is

dpy _ dgg _
o = n on p
Equation (12)

wiere the incoming wave potential is defined by,
2 2
—iﬂ(xcosﬁﬂ'sinﬁ) ﬁ)ﬂ-z
pg=i——e ¥ e ¥
@o

o Wt

Equation (13)
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-go(xp,t)+— ” ——G(xp 3p)=0(g.0)
Q

3 THE NUMERICAL MODEL

3.1 Solving the double body flow

The double body flow is solved using an external Neumann
formulation. The Neumann condition applied is that the
normal component of the ship velocity equals zero.

For any point P on the (external) surface B of the non-lifting
hull the integral formulation reads:

—%(XP)=—JJ o(Xg —-—————OG(XP’ o)ds+ O'(xp)——U

ar—lp 8np

Equation (14)

where U? is the undisturbed free stream velocity infinitely
far away from the vessel, and o(xp)represent the source

strength in xp. No free surface is present since the vessel is

mirrored in the still water plane. The Green’s function is the
Rankine source singularity,

-1
rZp,%g)
Equation (15)

G(EP,EQ) =

The influence ccefficients concerning the Green’s function
are calculated using the method described by Newman
(1986).

If the strength of each source singularity is known the double
body flow velocities can be calcufated in any point of the
fluid domain.

3.2 Solving the steady and unsteady flow

The steady and the unsteady flow are solved by applying
Green's second identity on the fluid domain, resulting in
the following integral formulation:

dG(3p,%g)
——-—-dS 0
= ]

FS.B

Equation (16)

in which the Rankine source singularity is used as the Green'’s
function. In Equation (16) the problem is written down for

the unsteady potentiai p(Z,r) but the same equation applies
to the steady potential ¢(Xx).

In the steady and the unsteady problem the boundaries of
the fluid domain are the free surface and the hull surface.

The normal derivative of the velocity potential on the free
surface in Equation (16) is expressed in its tangential
derivatives using Equations (5) and (7) for the steady and
unsteady problem respectively.

3.3 The discretisation scheme

The hull surface and the free surface are discretised using
flat quadrilateral panels. An example of a typical catamaran
free surface discretisation is given in Figure 1. In each panel
a collocation point is selected in which the integral equation
is discretised. A constant source and normal dipole singularity
strength are distributed over each panel.

To obtain a solution for the steady or unsteady flow it is
necessary to express the unknown velocity potential and its
first and second derivatives in @3 common unknown.
Sclavounos and Nakos (1988) showed that a bi-quadratic
spline collocation scheme of cubic order can be utilised for
this purpose.



FREE SURFACE 1

|
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Figure 1: Typical catamaran free surface discretisation

3.4 A transom free surface sheet

Most existing catamaran vessels are fitted with a transom
stern to install the-waterjet propuision system. Therefore the
implementation of a (limited) transom stern must be possible.
It is understood that a transom stern with some immersion
below the free surface introduces a significant non linear
effectin the flow. And even if the transom stern has a zero
or very limited immersion the stern wave system will be
dramatically influenced by it.

The assumption is made that the flow leaves the transom
edge tangential to the hull surface. This smooth separation
condition is modeled as,

Ber
P

=arctand,, ¢, =7, +harctanc,,

Equation (17)

where @,, isthe transom edge angle, 0, is the transom edge
elevation, and &a is the wave elevation in the first collocation
point at a distance h aft of the transom. The dynamic boundary
condition is used to discretise Equation (17).

The solution of the double body flow for a hull with a small
transom immersion is questionable, since the hull surface is
not a closed surface any more. However, up till now no
problems occured in finding the double body solution for
the catamaran under consideration.

3.5 The m-terms

The m-terms as presented in the linearised hull boundary
condition, Equation (11), were introduced by Ogilvie and
Tuck (1969), and read as,

(my,my,m3)T = ~(7-V)VO
(mg,ms,mg)T = ~(7-V)(Ex V®)
Equation (18)
In the m-terms second derivatives of the doubie body flow

occur and they must be calculated with some care since they
are known to introduce large numerical errors.

In the panel method presented here the second derivatives
for a far field collocation point are calculated following the
approach given by Newman (1986). For a near field
collocation point Stoke’s integral theorem is used to rewrite
the surface integral over a panel to an integration along the
panel edges, see Koning Gans (1994).

3.6 The overall motion equation
in the frequency domain the classical motion equation in six
degrees of freedom read,
j=6
2 .
z[“"?(Mij +Ap+io, B +Cilei=F 1o 6
j=t

Equation (19)

where Mij is the mass matrix, & =Z./@ is the complex

excitation in the i-th mode with & as the motion amplitude,

and where F is the complex exciting forca in the i-th mode,
which is a summation of the Froude Krilofi force and the
diffraction force,

£ =pH(iwe(wo +907)+ VD V(gg +@9))n;dS

quation (20)

Using the unsteady radiation potential for the i-th mode of
oscillation the pressure on the hull surface can be calculated,
resulting in the hydrodynamic coefficients,

Aj= fﬁ-?{J‘J‘(iwe(pj +V<I>-V(pj)ﬁ,-d5
e
B

8, =-%sj (10,0, +Vd-Vp,)idS
e
B8

Equation (21)

The restoring coefficients are given by,
Cj=-p f j V(%V(D VO+gnidS  j=12.3
B
= -pH(zx V)(%VCD-V(D+gz)Fz,-dS j=456"
3

Equation (22)

4 RESULTS

4.1 Mode{ experiments, Catamaran 372

Model experiments have been carried out with a catamaran
in the towing tank of Delft University, Van 't Vear {1997).
The main particulars of the model are presented in Table 1
and a fines plane is given in Figure 2.

Table 1: Main characteristics of the Catamaran 372 (DUT cat)
model

Length over all 311 m
Length between perpendiculars 3.00 m
Beam over all, B 084 m
Beam deminull, b 024 m
Distance between centerline demihuils, H 0.70 m
Draught, T 0.15 m
Displacement 87.07 kg
Trim 0.0 deg
Vertical center of gravity, KG 0337 m
Longitudinat center of gravity, LCG 141 m
Pitch radius of gyration, kK | 0.224 L
Length over beam ratio, Ub 12.5
Length over draught ratio, UT 20.0
Block coefficient demihull 0.403
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Figure 2: Lines plan catamaran 372 (DUT cat)

The following set of experiments have been carried out: 1)
sinkage and trim measurement, Fn = 0.18 to Fn =0.75; 2)
wave cut measurements during test series 1; 3) heave and
pitch motion response measurements, Fn= 0.30, 0.45, 0.60
and 0.75 and; 4) heave and pitch oscillation test, Fn = 0.30,
0.45, 0.60 and 0.75.

During the still water test runs, a wave cut measurement was
carried out at a distance of y=625 mm from the center plane
of the model (that is y/(0.5 B) = 1.38). In Figures 3 and 4 the
measurements are compared with the steady Seascape
calculations for Fn = 0.30 and Fn = 0.60. During the run at fn
= 0.60 the measured trim of the catamaran was 2.1 degress
{bow up) and the sinkage was 7.9mm (down). If these

quantities are included in the calculations by rebuilding the
hull surface, a better comparison is found with the wave cut
measurements.

The steady seascape at Fn = 0.45 is presented in Figure S.
The addition of @ wake sheet behind the catamaran vessel,
as was proposed by Kring and Sclavounos (1991) to obtain
a smooth free surface wave elevation, is not applied in
Seascape. Despite this fact, the wave elevation shows a
smooth connection between the different caicuiation grids.

The heave and pitch motions in head waves are presented
in Figure 6 for Fn = 0.30 and for Fn = 0.60 in the Figures 7
and 8. The agreement in heave for Fn = 0.30 is excellent but
the prediction for pitch is less satisfactory. The comparison

20 3 —
zeta/L 10 calculations ——
10 experiments ---------
0 |
-10 . |
x/L
_20 | { | |
-2 -1.5 -1 -0.5 0 0.5

Figure 3: Wavecut measurement and Seascape calculations, DUT Catamaran, Fn = 0.30, y/0.58 = 1.38

20
10
0
-10
-20 "ZET&/E"TGT'S‘ ........... o 1 ' experiments
-2 1.5 -1 -0.5 0 x/L

Figure 4: Wavecut measurement and Seascape calculations, DUT Catamaran, Fn = 0.60, y/0.58 = 1.38
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between the calculations and the measurement in Figure 7
is less good than the comparison between calculations and
measurements in Figure 8 where the hull grid has been
corrected for the measured trim angle and sinkage. Since
the trim and sinkage are quite significant at Fn =0.60 the
effect in the restoring terms is important and should be taken
into account.

A comparison between the hydrodynamic coefficients at Fn
= 0.30 is presented in Figure 9. Reasonable agreement has
been found.

Figure 6: Heave and pitch RAQ, DUT catamaran, Fn = 0.30, without trim and sinkage correction

CONCLUSIONS

With a 3D Rankine panel method it is possible to obtain a
good solution for the steady and unsteady wave pattern
around twin hull vessel. The method can predict the heave
and  pitch responses of a catamaran vessel with reasonable
accuracy up to high Froude numbers. If the trim and sinkage
are significant they should be included in the motion
calculations.
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Figure 7: Heave and pitch RAO, DUT catamaran, fn = 0.60 without trim and sinkage correction
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Figure 8: Heave and pitch RAO, Dut catamaran, Fn = 0.60 with trim and sinkage correction
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Figure 9: Hydrodynamic coefficients, Fn = 0.30
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