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Resistance

Spray resistance
Air resistance
Viscous resistance
Form factors (Molland et al)
Flow separation at transom stern
Wave resistance
Wash
Wave decay of wave systems
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What can we learn about
resistance and propulsion
of agquatic animals?
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Air resistance and flow




Measurement of air resistance

= Bias due
= to towing
carriage

Rn,, = 0.1Rn

water

Wave resistance and wash

Kelvin waves
by a duck

Divergent and transverse steady
waves in deep water
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WAVE CRESTS 19°28'




Wave length and group velocity in

Kelvin angle in deep water
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Kelvin angles during turning

The ship moves the water
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: Contribution from bow and stern
to the wave elevation along the ship track

i
1 2 3 4 5 6 7 8 9 10
il
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v =g/U? secd =1/cosd,cp = centerplane
Transverse waves: 0< |9| <sin™ (1/\/5)

Divergent waves: sint (1/\/5) <lg|<xi2




Wave resistance of Tuck’s
parabolic strut
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Wave resistance of multihull vessel
Wave amplitude function by linear superposition
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Wave resistance of catamaran with
nonstaggered identical demihulls
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SH=Side hull
2p=Centerlines distance
L=Ship length

Transverse wave crests generated
by two staggered hulls (Sading)
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Hull interaction due to wave effects
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Nonlinear wave generation
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Numerical Simulation:

Criterion for flow separation from 2D+t Strategy

the transom stern

D=Draft at the transom

2.5D (2D+t) theory with potential
flow theory

Solution procedure
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Critical speed as a function of
U s water depth
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Wave pattern at critical speed

Propagation of waves at critical speed
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Russel’s towing mechanism of
1835

Russel (1865):0ne day, "the happiest of (his) life,
something unexpected happened”.

A large,solitary progressive wave occurred
ahead of the ship.Could not follow it by foot.
Got on the the horseback

and followed it for more than a mile

Wave pattern at supercritical speed




Boundaries of waves at
supercritical speed (Tuck)

Tuck’s shallow water theory.
Supercritical speed

* No wave decay (important for wash)
* Wave resistance
e Trim

Theory.
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* No wave generation and wave resistance 0012/
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Water jet propulsion

Water jet outlet

Forward thrust

Water jet propulsion in
nature

Scallop

» Water jet propulsion

* Up to 6 meters

* 15-20 seconds durability
* Poor maneuverability

Squid and
octopus

Mantle

wewa |« Jet propulsion
 Undulatory fin motions

“ * Tentacle 'walking’
f:i:> » Pumping of lower body

ITTC procedure for model tests

Scaling of inlet flow
Efficiency estimates

Water jet pump with impeller and
stator
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Bucket curves for cavitation in the
water jet inlet
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Diagrams from waterjet manufacturer

Net thrust & |
Hull resistance |

Diagrams from waterjet manufacturer
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Tractor propeller

Wave induced motions

Wave-induced accelerations of
cargo and equipment
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Wave-induced accelerations of
cargo and equipment
.'“'

Wave-induced accelerations of
cargo and equipment

« Note linear ship motion calculations are in
Earth-fixed coordinate system

» Relative acceleration term is important
parameter

d’m, _ d’n,
a = +7Z -
X dt2 c dt2 9775

Heave excitation force as a
function of Fn

Heave and pitch damping

Hull-lift damping

Foil-lift damping

* Viscous damping ?

* Wave radiation damping

Hull lift damping in heave at high
frequencies

Vertical hydrodynamic force per unit length:

0 0 dn
f=—[2iul) a9
: (aﬁ axj[a“ dt}

Total vertical hydrodynamic force by integration:

d2773 B dr,

Fy=—Ay dt? - 33?

,By; =Uay, (XT)

Similar as low-aspect ratio lifting surface theory.
The angle of attack is minus heave velocity divided by U

Resonant heave in beam sea
versus beam-draft ratio at Fn=0
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Wave amplitude due to heave
(Ohkusu)

2p

Piston mode resonance (Molin)
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Simplified estimates of wave angle
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Experimental and Numerical Investigation
Unsteadv tests
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Nonlinear effect




Experimental and Numerical Investigation
Unsteadv tests
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Nonlinear effect

Heave and pitch predictions

» Good agreement between transient testing
and regular wave tests

« Differences are due to nonlinear effects

Small experimental errors

Interaction between steady and unsteady

flow matters in theoretical predictions

 Large resonant motions. One reason is
small beam-draft ratio of demihulls

Motion control

Interceptor

Trimtab

Max operational Hs

45+

Max Hs
(m) *0 [ 7=
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3.0 \\ ./
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Time domain simulations

e Convolution integrals and retardation
function

* Direct numerical simulations

Convolution integrals and
retardation functions in time
domain equations

[h (i, (t-2)dz

14



Retardation function

hao(t) - By ——
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Rankine panel method
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Wave induced motions and loads

e Optimization must include seakeeping
Low wave resistance can mean
-large vertical ship accelerations
(student project)
-slamming (Millenium)

« Monohulls:Large length and large beam-draft
ratio is beneficial

* Automatic motion control

-Small ship motions can mean large
global wave loads

Contribution to added resistance
in waves

In and out of the water

Estimation of involuntary
speed reduction
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GENERAL TYPES OF INSTABILITY
REF: COHEN & BLOUNT
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COMBINED
COMBINED M ;<0
oM, 50
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Steady heel stability of round-bilge hull

abili
.
Ll D ﬁ LWL

,I_ \f“-u
Limiting GM/D " -
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| Fi=0.6
’ “BID

Steady roll stability as a function of

A speed
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M ek @@
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Ref.:Per Werenskiold

From the turning clrcle mansuver:
* TURNING ABILITY AT 35 DEG RUDDER ANGLE
- advance < 45 L,
- tactical diamoter < 5 L,
° COURSE INITIATING ABILITY AT 10 DEG RUDDER ANGLE
- travellod distance < 2.5 L, at 10 deg change of haading
From the zig-zag mansuver:
°  COURSE CHECKING ABILITY
= 1010 Z-maneuver
first overshoot < 10 dog il LU < 10 see
first ovarshoot < 20 dag I.w!Uxaowc
first overshoot: (5 + Wl ) for 10 s8¢ < LU < 30 sec
second axecuta < frst overshoat + 15 dag
- 20020 maneuver
first gvarshoot < 25 dog

* STOPPING ABILITY

- mm(\sL”

Maneuvering criteria. Service
speed.Ships >100m. IMO 2002

Turning circle manuver

Tactical diamater

Transler

Advancs

cule ralerence O
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Zig-zag maneuver

A
Flrst overshoot angle

¥ [1 First time

o

Course angle w

| /7 -
J

‘ Rudder angle &

Second |

angle

Second hoot lime

b
. Perlod

ist 2md 3rd 4 1h rudder executs

Maneuvering definitions

0-Xg¥eZg : Fixed in space
G-xyz :Fixed to the ship

0 Xg

-2

"ﬁm.,ﬂ_ﬂ o | >

Ye

Maneuvering and slender body
theory (Newman)

» Moderate speed, i.e rigid free surface condition
» Body-fixed coordinate system

e Linear sway and yaw

» Transverse force per unit length :

0

0 . .
fZHD — _(E+U &J[azz (772 + X175 )]

Total transverse force and yaw moment contain
important transom stern effects due to low-
aspect ratio lifting effects

Other examples on low aspect ratio
lifting_surfaces

Other examples on low aspect ratio
lifting surfaces

Transform . -
of the
infinite S — . s S—
frequency o £ g0 A2
heave

problem to ;

the low- Tl
frequency  wes | Y| " I
Sway [ nead | - S
problem it 0 "
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Steady
transverse
force per unit
length due to

yaw velocity

Steady transverse _ -o: oz

force per unit
length

due to 4
sway velocity

Ship velocities in body-fixed
coordinate system decomposed in
an inertial system

Mo(t+at)
[

A
[
‘\

A

' |

Time decay of eigensolutions for

sway and vaw
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asfy,
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LEI Y
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08
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04

Newman'’s directional stability
criterion
* Moderate speed

* Deep water

« Infinite horizontal
extent

MA,,
M+A,

% [ay, (%) >

Depth effect on sway added mass

i ———— Newmn (Figt plote, Aspect rotio=031%H
\
‘ll - —Hanand Honooka (Circular cylinder} %4

i I\‘ —--== FloggandNe
1'\ b & Fulino. TANKER (Fn:0.0675)
*\ 3 P “ (Fn=0103) },,M
LY B 7 MARNER{Fn:0.0808)
\ b . * (F204SS)
'\

———wvan Beriekom amd Gadderd (1972}

T

niRectanguiar cylinder, beam,drawhi=2 (1971)




Hydrodynamic derivative terms

Maneuvering experiments
Directional stability

Y, “I'** + __Theory
0.50UD" ‘i' \/4‘C Experimtlents
w.'-. . - T > —
“%L e — _Jwu —b —
“ o5 =
e ’ Water Jet Version
N
— ) Theory " L :2.000 m
oo /\/ e B(Twin Hull) : 0.333 m
L \?"/e 0 draught : 0.051 m
. o ju
an e — @
Stabiity Turning test with the twin hull
parameter With Skeg vessel SSTH

0.2

01 Emnbinglata

O keseniiiNG 3 Unstable 3
0.1 - —— i
02 , | Unstable P i

01 02 03 04 05 06 07
Froude number

0.8

Zig-zag maneuver test with the twin hull vessel SSTH

[ .[ H i

T —aL=
gs-i.‘--ze-‘-- \ / f .m,
%“"'%"'E“-iﬁ_ @\ ™ : : "=
‘?—!-.' ‘?- " 4

Crash astern test with the twin hull vessel SSTH
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Viscous effects at moderat Fn.
2D+t analysis

Earth-Fixed

Wake development for
impulsively started cylinder

vt
VE_ =4
=2 R
s
Vt s
R

Drag coefficient for impulsively
started cylinder (Sarpkaya)

u c fn 107 Rn 10
2.0 w Loty . LN
sl o 018 e 034
]
1.8 + 2 028 & 0.45
& 032 2 077
1. = .
= e * 091
2 Paey :
14 Tt ; Capture of | CAPtue of
unsymmetry e oo T artex | 4" vortex
1.2 =
_""I‘ Captre of
| 17 vortex Capture of 2
19 o An 10"
0.8} ¥ 0.44
@ 0.84
0.6 @ 0.88
Start of mation L] 1.06
0.4 Beginning of separation o 1.20
05l 1" Beginning of constant. velocity -
d LR
o : Lol L (30 W "
0590 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

Sway force and yaw moment. 2D+t

Fr
%

/PPl

Longitudinal distribution of drag coefficient
Co

-
V=02 e

08k

06

04

02

Hydrodynamic lift(L) and drag(D)
on an all-movable rudder
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Axial slip stream velocity behind a propeller

0 5 10 15 20 25 30 Cy

Speed loss due to maneuvering

» Body-fixed coordinate system
» Double-body approximation, i.e. moderate speed

* Added mass theory for non-lifting body in infinite
fluid

M (U—vy)=-Au—R; (u)+(1-t))T(u,n)
+ ALV + Agr® + Xa‘552

Speed loss in turning

Resistance term:

R 2

(M4 Ay )y =~(M 4+ A,)

Effect of forward speed

* Wave generation
 Sinkage and trim

e Coupled sway,yaw and heel with speed
reduction

Maneuvering of trimaran

 Strong nonlinearities may occur

» Heel may cause sign change in yaw
moment at relatively small heel angles

Broaching of catamaran in
guartering sea

Rudder angle (deg)
j Rudder angIeY-a}W (dea)
30 T 30
i
iy
o AT 7T =
J \
-30 Yaw -30
210 270 340

Time (s)

23



