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Abstract

The main objective of this work was to introduce and validate an appropriate algorithm for studying the

hydrodynamic characteristics (i.e. pressure distribution, lift, drag, and wave pattern) of 3D planing hulls

and wedge-shapes, including trim effects, moving at a constant speed on the surface of calm water. The

work builds on the earlier work of the authors, paying more attention to wave pattern analysis. An integral

equation was derived from Green’s theorem and the unknown pressure distributions on each element were

determined by solving an integral equation relating the potentials on the planing hull and the free surface.

The hydrodynamic characteristics of the planing hull were calculated numerically in different wetted length-

to-beam ratios, deadrise angles, trim angles, and Froude numbers. The effect of spray during planing was

considered in the computations of numerical results. Computational results are presented and compared

with existing theories and experiments. It is shown that the agreement between the results of experimental

measurements and those of the present numerical method is satisfactory.
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Introduction

The planing hull form remains one of the most effective concepts for high-speed marine vehicles that are employed
in commercial, military, and recreational activities. Prediction of the forces acting on a planing hull is required
for hull form design. Preliminary lift and drag estimation must also be performed in the early stages of the
designing process in order to estimate the propulsor and main engine’s characteristics. Although the model tests
present the most comprehensive analysis of hydrodynamics, they are expensive and time-consuming. Therefore,
the computational procedures are the best substitute that can quickly take into account more design alternatives.

During the early part of the 20th century, the improvement of sea planes caused significant scientific
concentration on the analysis of the planing hull. Many theoretical attempts have been made, and each method
has proved to possess advantages and disadvantages. Dawson (1977) employed a distribution of Rankine-type

sources on the ship hull and free surface. Cao et al. (1991) described a desingularized boundary integral method

for fully nonlinear free-surface problems. Nakos and Sclavounos (1994) computed steady wave patterns and wave
drag of several ship hulls, including transom-stern ships, with a new Rankine panel method. To calculate the

155



KOHANSAL, GHASSEMI, GHAISI

wave-making drag of catamarans, Lee and Joo (1996) used a mixed source and doublet distribution on the

body surface and source distribution on the free surface. Zhao et al. (1997) introduced the strip theory for

steady planing in calm water. An IBEM (Rankine panel) to solve the flow around surface-piercing hydrofoils

and ships was presented by Hsin and Chou (1998). Yasko (1998) presented 2 iterative procedures for small

and large Froude numbers for fully submerged 2D hydrofoils under a free surface. Janson (1997) applied linear
and nonlinear potential flow calculations of free surface waves, including lift and induced drag of hydrofoils,
vertical struts, and Wigley ship hulls. A 3D panel method to predict potential flow for yachts was provided by
Larson and Janson (1999). In their method, source and doublet were distributed on the lifting part of the yacht.
Another numerical method based on Rankine sources was developed for the prediction of flow passing ships by
Rigby et al. (2001). Rahmanian (2004) applied the BEM to the hydrodynamic analysis of planing hulls and
obtained the induced hydrodynamic lift and drag in steady conditions. Numerical calculations of ship-induced
waves using the boundary element method with a triangular mesh surface were conducted by Sadathosseini
et al. (2005). Xie et al. (2005) reported a study of the hydrodynamic problem of 3D planing hulls by using

the vortex theory and the finite pressure element approach. Bal (2008) and Uslu and Bal (2008) used the
boundary element to study hydrodynamic characteristics of 2- and 3D bodies beneath the free surface, and
Trafdar and Suzuki (2007) applied a similar method to the study of catamaran vessels. The 3D fully nonlinear
waves generated by moving disturbances with steady forward speed without motions were predicted by Kara
(2007). Hydrodynamic characteristics of 3D lifting and nonlifting bodies near the free surface were addressed

by Ghassemi and Ghiasi (2008). Recently, Kohansal and Ghassemi (2010) presented the numerical modeling
of hydrodynamic characteristics of various planing hull forms at small trim angles. A critical aspect in all
implementations of the boundary element is an accurate computation of the kernel’s integration. When kernels
are singular or hypersingular (i.e. when the collocation point belongs to the integration element), a different
technique must be devised to achieve proper computation. Several procedures have been proposed to solve these
integrals (Gao, 2005; Ghassemi and Kohansal, 2009).

The main purpose of this study was therefore to estimate the hydrodynamic characteristics of the planing
hull by using the potential theory and boundary element method. The wetted area of the hull was prescribed
and a number of numerical tests were carried out to verify the present method. The validation of the present
method was confirmed with good correlation to the experimental data and also with other available numerical
results.

Governing Equations

A planing hull was considered to move at a constant speed on unrestricted and calm water, as shown in Figure
1. A right-hand coordinate system, o-xyz, was assumed to be located on the planing hull advancing at forward
speed U on the undisturbed water surface. The horizontal and vertical axes, ox and oz, were assumed to be
along and at a right angle to the direction of motion, and the y-axis completed the right-handed system. The
origin of the coordinate system was located at the base plane of the transom. Traditional ideal flow assumptions
that ignore the effect of viscosity and compressibility were utilized. These assumptions led to a boundary value
problem for the velocity potential with Laplace’s equation satisfied in the fluid. Under the global coordinate
system, a total velocity potential Φ(x, y, z) consists of inflow potential and flow due to the presence of the body,
and can be defined as follows:
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Figure 1. Definition sketch of the coordinate system.

Φ(x, y, z) = ϕ∞(x, y, z) + φ(x, y, z), (1)

where ϕ∞(x, y, z) = �U. �x is the incoming velocity potential and �x is the position vector, and φ(x, y, z) is the
velocity potential due to the interaction between the inflow potential, the body, and the free surface. Thus, the
total potential can be written as follows:

Φ(x, y, z) = �U. �x + φ(x, y, z). (2)

Both the total and perturbation velocity potentials are governed by Laplace’s equation in domain Ω:

∇2Φ = ∇2φ = 0. (3)

The following boundary conditions should also be satisfied:

∂Φ
∂n

= 0 ⇒ ∂φ

∂n
= − �U.�n on SB , (4)

{
∂Φ
∂x . ∂ζ

∂x + ∂Φ
∂y . ∂ζ

∂y − ∂Φ
∂z = 0 on z = ς,

gζ + 1
2 (∇Φ.∇Φ− U2) = 0 on z = ς,

(5)

g
∂Φ
∂z

+ ∇Φ.∇(
1
2
∇Φ.∇Φ) = 0 on z = ς, (6)

φxx − K0Φz = 0 on SF , (7)

Φ(x, y, z) → x · �U far away upstream. (8)

The potential φ is calculated by the boundary element method, which is based on Green’s identity. Let us
consider a closed computational domain Ω with boundary S and unit normal vector n̂ to S , and oriented
into Ω, as depicted in Figure 2. In general, the boundary surface includes the body surface (SB) and the free

surface (SF ). Thus, the perturbation potential φ is given by the following integral expression with points q

(source point) on S and p (field point) in domain Ω:

q

n

BS
x

z

o

p

surfaceFreeFS

,

S

n→

→

n→

n→

∞

Ω φ

Figure 2. Definition of the coordinate system and notation.
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4π eφ(P ) =
∫

SB

[
φ(q)

∂G

∂nq
− ∂φ(q)

∂nq
G

]
dS −

∫
SF

[
∂φ(q)
∂nq

G

]
dS, (9)

where ∂/∂n is the normal derivative with respect to point q . Meanwhile,e is the solid angle and can be defined
as follows:

e =

{
1/2 for P on SB ,

1 for P on SF .
(10)

G is Green’s function, which might be expressed in the formG = 1/Rpq + 1/R′
pq . Here Rpq is the dis-

tance between the field point p and the source pointq(
(
Rpq =

√
(x − ξ)2 + (y − η)2 + (z − ζ)2

)
), and R′

pq

is the distance between the field point pand the image of the source point relative to the mean free surface

(R′
pq =

√
(x − ξ′)2 + (y − η′)2 + (z − ζ′)2), where (ξ, η, ζ) and (ξ′, η′, ζ′) are coordinates of points q andq′ ,

respectively. Therefore, Eq. (9) can be expressed as:

4πeφ(p) =
∫

SB

φ(q) ∂
∂nq

(
1

Rpq
+ 1

R′
pq

)
dS −

∫
SB

∂φ(q)
∂nq

(
1

Rpq
+ 1

R′
pq

)
dS

−
∫

SF

∂φ(q)
∂nq

(
1

Rpq
+ 1

R′
pq

)
dS

. (11)

Numerical Scheme

The body surface and the free surface were discretized into the quadrilateral elements (Figure 3). The discretized

form of integral Eq. (11) for the body and free surface are expressed as:

 

Figure 3. Element arrangement of the craft and free surface domain.

NB∑
j=1

[
δij − C̄ij

]
{φj} −

NB∑
j=1

[Bij ]
{

(∂φ/∂n)j

}
+

NF∑
j=1

[Fij]
{

(∂φ/∂n)j

}
= 0, i = 1, 2, .., NB (12)

NB∑
j=1

∂2[C̄ij ]
∂x2 {φxxj} −

NB∑
j=1

∂2[Bij]
∂x2

{
(∂φxx/∂n)j

}
+

NF∑
j=1

(
∂2[Fij]

∂x2 − K0δij

) {
(∂φxx/∂n)j

}
= 0,

i = 1, 2, .., NF

. (13)
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Here, NB and NF are the number of elements on the body and the free surfaces, respectively, and C̄ij and

Bij are the influence coefficients on element j acting on the control point of element i .

C̄ij =
1

4πe

∫
SB

∂

∂nj

(
1

Rpq
+

1
R′

pq

)
dSj, (14)

Bij =
1

4πe

∫
SB

(
1

Rpq
+

1
R′

pq

)
dSj. (15)

Fij =
1

4πe

∫
SF

(
1

Rpq
+

1
R′

pq

)
dSj, (16)

The combination matrix form of Eqs. (12) and (13) are expressed as either

[ [
δ − C̄

]
NB×NB

[F ]NB×NF[
C̄xx

]
NF ×NB

[−K0δ + Fxx]NF ×NF

]{
{φ}NB×1

{σ}NF ×1

}
=

[
[B]NB×NB

[Bxx]NF ×NB

]{ {
�U.�n

}
NB×1

{0}NF ×1

}
(17)

or
[A]NT ×NT

{x}NT ×1 = {b}NT ×1 , (18)

where δij is the Kronecker delta function. The velocity component (∂φ/∂n)j and potential φj are considered

to be linear on the jth element. For this type of problem, a formal solution may be given by the direct methods
of LU decomposition.

Velocity and pressure distribution

A local distribution of the potential was considered on 5 elements, and the tangential velocity was computed by
derivation. s2 and s1 were defined by connecting the middle points of element sides. a1 and a2 are the local
orthogonal coordinates. a1 and s1 are in the same direction, and a2 is normal to a1 (Figure 4). e1 , e2 , and
t2 are the unit vectors in a1 , a2 , and s2 directions, respectively. The velocity potential in the local orthogonal
coordinate system can be expressed as:

1 ,a

a

1s

2

∇φ

2s

1e

2e 2t

1, t

Figure 4. Local element and adjacent elements.
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φ = as2 + bs + c. (19)

Therefore, the velocity can be computed as:

∇φ = �vt =
∂φ

∂a1
�e1 +

∂φ

∂a2
�e2. (20)

From Figure 4, it is apparent that the velocity components in a1 and s1 directions are the same, while the
velocity components in a2 and s2 directions are different. It can be written as:

∂φ

∂a1
=

∂φ

∂s1
(21)

∂φ

∂a2
=

∂φ
∂s2

− (�t2.�e1) ∂φ
∂s1

(�t2.�e2)
, (22)

and then:

∇φ = �vt =
∂φ

∂s1
�e1 +

∂φ
∂s2

− (�t2.�e1) ∂φ
∂s1

(�t2.�e2)
�e2. (23)

The induced velocity around the body may be determined by direct differentiation of Eq. (11) for e(p) = 1,
giving:

4π · �Vi(P ) =
∫

SB+SF

φ(q)∇P

[
∂

∂nq

(
1

Rpq
+

1
R′

pq

)]
dSq −

∫
SB+SF

∂φ(q)
∂nq

∇P

[
1

Rpq
+

1
R′

pq

]
dSq, (24)

where

∇P =
∂

∂nPx

�i +
∂

∂nPy

�j +
∂

∂nPz

�k. (25)

The arbitrary domain around the body was discretized into NField points. Thus, the discretization form of Eq.
(24) is expressed for a given point pi on S as:

�Vi(P ) =
N∑

j=1

φj∇P Dij −
N∑

j=1

φj
n∇P Sij,i = 1, 2, .., NField, (26)

where: ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∇P Dij = 1
4π

k∑
k=1

∫
SJ

∇P

[
∂

∂nj

(
1

Rpq
+ 1

R′
pq

)]
dSJ

∇P Sij = 1
4π

k∑
k=1

∫
SJ

∇P

(
1

Rpq
+ 1

R′
pq

)
dSJ

. (27)

The integrals involved in the above equations were numerically calculated by the Gauss quadrature integration
method. The pressure on the hull surface was calculated by Bernoulli’s equation in the following way:

P

ρ
= −gz − 1

2
∇φ · ∇φ = −

(
gz +

(
1
2
∇φ− �U

)
· ∇φ

)
, (28)
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or

P = −ρg hz + 0.5ρ
(
2 �U.�vt − �vt. �vt

)
. (29)

The first term in the right part of Eq. (29) is the hydrostatic pressure, Ph , and hZ is the immersed part of the
hull surface position. The second term is the dynamic part of pressure Pd , which is generated by the induced
velocity. After calculating fluid velocity ∇Φ on the body surface, the pressure coefficient can be assessed as:

CP = 1 −
(
∇Φ
U

)2

= 1 −
(

1 − ∇φ

U

)2

. (30)

Hydrodynamic forces

The hydrodynamic lift forces (Ld), buoyant force (Ls), and induced drag (Di) acting on the hull can be
obtained by integrating the pressure over the entire wetted surface:

Ld = 0.5ρ
∫

SB

(
2�U.�vt − �vt.�vt

)
nzdS

Ls =
∫

SB

ρghzdS

Di = 0.5ρ
∫

SB

(
2�U.�vt − �vt.�vt

)
nxdS

, (31)

where �n(nx, ny, nz) is the outward unit normal vector on the wetted body surface. The total drag (DT ) of a

planing hull is made up of several components, i.e. spray drag DSpray , induced drag Di , and frictional drag
DF :

DT = DSpray + Di + DF . (32)

At low speeds, the drag is almost frictional. Water surface disturbance of a planing hull can be presented as
follows (Bowles and Denny, 2005):

LK − LC =
B

2
tan β

tan τ
(1

/
(1/(1 + tan(β) tan(β/2))0.5 + 1). (33)

The flow velocity component normal to the keel is U = VS sin τ . The spray surface area and the pressure due
to spray may be approximated by the following equations (Figure 5):

Lc 

Lk 

Figure 5. Bottom view of wetted surface area for a craft.
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ASpray = K1(LK − LC)B/ cos β (34)

PS = K2.P (at bow of the keel), (35)

where K1 and K2 depend on the hull speed and hull dimensions and are given as follows:

K1 = f(Fn∇) =

⎧⎪⎨
⎪⎩

0.2 if Fn∇ < 3

0.4 if 3 ≤ Fn∇ < 5

0.7 if Fn∇ ≥ 5

K2 = f(β, τ, b(y)) =

⎧⎪⎨
⎪⎩

2 if b(y) < 0.5B

1.5 if 0.5B ≤ b(y) < 0.9B

1.2 if 0.9B ≤ b(y) ≤ B

. (36)

P is the pressure obtained from Eq. (29) at the nearest element to the spray root, and B and b(y) are the

maximum breadth and distance between the spray root and centerline, respectively. The spray drag (DSpray)

and lift (LSpray) generated by the spray are estimated separately with the following equations:

DSpray = PSASpray cos τ

LSpray = PSASpray sin τ
. (37)

For each element in the longitudinal stripwise of the hull, the section frictional drag DF is obtained by:

DF = 0.5ρ

lwet(j)∫
0

CfU2
e dx = 0.5ρ

NStrip∑
k=1

CfU2
e (Δx), (38)

where Cf is the local frictional coefficient and is determined by the ITTC empirical formula (Bertram 2000).

NStrip is the number of strips in the longitudinal direction. The forces acting on a planing hull are shown in

Figure 6. Vertical plane force equilibrium requires:

X

Z

o

surfaceFree

R mcg

T
pL

cgL

L

τ

ε

Figure 6. Forces acting on a craft.

Di + DF + Dspray = T cos(τ + αs), (39)

Li + Ls + Lspray = T sin(τ + αs) = Δ. (40)

Here, T is the propeller thrust and Δ is the vessel weight. The trim angle, τ , is defined as the angle between
the undisturbed free surface and a line tangent to the keel at the keel-transom intersection. The shaft angle,
αs , is also measured from a line tangent to the keel at the keel-transom intersection and shaft centerline.
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Wave pattern

When the body (hull) moves, it produces wave patterns. The movement of a body across the free surface of
water creates a variable pressure distribution along the body. The pressure variation generates a set of waves
that move out away from the body. The far-field wave pattern created by a body moving at a constant speed
on a straight course in still and deep water consists of diverging and transverse waves. The computation of
the steady wave patterns generated by a planing hull moving at a constant forward speed U is a matter of
high interest for naval architects and marine and ocean engineers. The design and location of propulsion inlets,
cooling water inlets, propellers, rudders, etc. are all influenced by the shape of the planing hull and the waves
generated around it. The waves may affect other bodies and cause nearby small boats to capsize or ground, or
may cause large moored ships to move and mooring lines to break. The wave patterns generated by a planing
hull will affect the design parameters, such as propulsion system arrangements. The accuracy of the estimation
of the wave wake in the vicinity of a planing hull is essential for the calculation of the pressure distribution
under the bottom of the hull and then for the prediction of the hydrodynamics of the planing hull. At moderate
speeds, planing hulls produce bow waves, which increase their drag but have little effect on lift. At high speeds,
the hull is lifted out of the water and starts planing, so the wave-making drag is considerably reduced. At
larger Froude numbers, the transverse waves tend to disappear, so, in the far field, where the Froude number is
large, the wave pattern is dominated by divergent waves. The expression for free surface elevation ς(x, y) can

be obtained by inserting potential velocity φ(x, y, z)into the free surface condition (Eq. 7). The wave profile
can be obtained by:

ζ = −U

g

∂φ

∂x
on SF . (41)

Numerical Results

Planing hull

A number of numerical tests were carried out to verify the method. Calculations were made for a number
of V-shape hulls with different deadrise angles, wetted length-to-beam ratios, and Froude numbers during
pure planing to compare the results with those of Kapryan and Boyd (1955). First of all, the effect of the
free surface on the pressure distribution of the planing hull is shown in Figure 7 for a 20◦ deadrise angle
at Fn = 1.20. For several related prismatic planing hulls, with deadrise angles of 20◦ and 40◦ , the pressure
distributions were computed during pure planing and are presented for various wetted length-to-beam ratios and
trim angles. To compare calculated nondimensional pressure distribution values (Cp) on V-shaped planing hulls

with experimental ones, several planing hulls with different deadrise angles (β = 200 and , 400), trim angles

(τ = 6◦, 9◦, 18◦, 30◦), and length-to-beam ratios (L/B = 0.87, 1.02, 2.52) were chosen and some results
are presented in Figures 8-13. The effects of varying wetted length-to-beam ratio and trim angle on pressure
distribution coefficients (and, consequently, on the lift and drag coefficients) are given in these Figures. The
reduction in pressure accompanying an increase in the angle of the deadrise was about what would be expected
on the basis of experimental data. These Figures reveal that for a fixed Froude number, as the trim angle is
increased, the value of Cp increases, and at higher values of the deadrise angle, the value of Cp decreases. For
a fixed deadrise angle and a decreasing length-to-beam ratio (L/B), the nondimensional pressure increases. In
general, the high- and low-pressure areas are virtually identical, although the numerical pressures in the vicinity
of the stagnation point are seen to be higher than those predicted by experiments. It is clear that, although
the trends are the same, the numerical method predicts larger values in this region. Certainly, the experimental
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accuracy also plays an important role in these discrepancies. Figure 14 presents the wave contours produced by
a planing hull with and without a trim angle at Fn = 1.20. As can be seen, diverging waves spread out from
the bow and transverse waves follow behind the hull. The trim and rise of the center of gravity (CG) is shown

in Figure 15. When the Froude number (Fn) increases, the trim diminishes and the rise of the CG increases.
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Figure 7. Comparison of pressure distribution on a 20◦ deadrise angle of the hull at Fn = 1.20 with and without the

free surface effects.
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Figure 8. Nondimensional pressure distribution on a

planing hull (Deadrise = 20© ,U = 12.17 [m/s] , Trim =

6◦ , L/B = 0.86).

Figure 9. Nondimensional pressure distribution on a

planing hull (Deadrise = 20◦ ,U = 12.17 [m/s] , Trim =

18◦ , L/B = 1.02).
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Figure 10. Nondimensional pressure distribution on a

planing hull (Deadrise = 20◦ ,U = 12.17 [m/s] , Trim =

30◦ , L/B = 1.02).

Figure 11. Nondimensional pressure distribution on a

planing hull (Deadrise = 40◦ ,U = 12.17 [m/s] , Trim =

18◦ , L/B = 0.98).

164



KOHANSAL, GHASSEMI, GHAISI

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

C
p

X / L

Exp. Kapryan and BoydPresent Method

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

C
p

X / L

Exp. Kapryan and BoydPresent Method

Figure 12. Nondimensional pressure distribution on a

planing hull (Deadrise = 40 ◦ ,U = 12.17 [m/s] , Trim =

9◦ , L/B = 2.52).

Figure 13. Nondimensional pressure distribution on a

planing hull (Deadrise = 40◦ ,U = 12.17 [m/s] , Trim =

30 ◦ , L/B = 2.52).
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Figure 15. Trim and rise of CG (as percentage of length)

in terms of Froude number.

Planing wedge-shape

The present method was extended to a planing wedge-shaped hull. This hull was defined as z = f(x, y) =

(y/B−x/L) · h andz < 0. Its overall length, L , is 0.754, the maximum hull breadthB = 0.786, the hull depth
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at the transom stern h = 0.085, the deadrise angle β = 13◦ , and the trim angle τ = 6◦ . Figure 16 illustrates
a 3D view of this hull. In numerical computations, the effects of spray on the drag, lift, and moment are
considered. Convergence of lift and drag coefficients of a planing wedge-shape versus the number of elements at
Fn = 1.2 are shown in Figure 17. We found that the solutions presented here were independent of the number
of the elements if we choose more than 2000 elements on the body and free surface. Elements were also arranged
in equal spacing forms; the elements on the body and free surface should not be very different in dimensions.

Figure 18 shows a comparison of drag coefficient values
(

CD = D

/
ρU2∇2/3

)
for a planing wedge-shaped

hull in different Froude numbers with the experimental results presented by Himeno et al. (1993). The spray

drag is important at high speeds. This component is predicted by empirical formulae, as shown in Eq. (36).

At low speeds (Fn < 0.5 ), no spray drag appears, while at high speeds (Fn > 1 ), this component may be

considerable. It is shown that with the present calculations, this component is about 5%-8% of the total drag.

In Figure 19, the coefficients of the hydrodynamic lift
(

CL = L

/
ρU2∇

2/3
)

exerted on the bottom of this

hull, which are obtained by the integration of the pressure distribution, are compared with those obtained from
the force measurements. The hydrodynamic lift and drag increase as the Froude number is increased from 0,
and a maximum is reached at aboutFn = 1.20. These forces then decrease as the Froude number is increased
further. A comparison of the moment about a horizontal axis through transom for the planing wedge-shaped
hull against the Froude number is given in Figure 20. As can be seen from these figures, the calculated results
are somewhat underpredicted. It was found that by consideration of spray effects on the bow region of the
planing hull, better agreement with the experimental results could be achieved. Agreement between the present
method and experimental results was shown to be good. Some discrepancies were noted near the stern, where
separation and eddy losses may be present in the experiment. The wave contours for planing wedge-shaped hulls
at Fn = 1.20 predicted by the present method are given in Figure 21. In general, it was found that the presented
numerical results are in good agreement with the experimental data, and it seems that this method is efficient
and applicable for predicting the hydrodynamic performance of 3D planing hulls and planing wedge-shapes.
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Figure 16. Three-dimensional view of a planing wedge-

shaped hull.

Figure 17. Convergence of lift and drag coefficients of

planing wedge-shape versus the number of elements, Fn =

1.2.
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Figure 18. Drag coefficient for a planing wedge-shaped

hull against Froude number Fn , with and without spray

effect.

Figure 19. Hydrodynamic lift coefficient for a planing

wedge-shaped hull against Fn , with and without spray

effect.
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Figure 20. Moment about a horizontal axis through

transom for a planing wedge-shaped hull against Fn , with

and without spray effect.

Figure 21. Wave contours for a planing wedge-shaped

hull at Fn = 1.20.

Conclusion

In this paper, prediction of hydrodynamic characteristics of planing hulls and wedge-shapes was performed by
means of the boundary element method. Numerical computations were conducted in this study for various
3D planing hulls, and pressure distributions were calculated numerically for a series of related planing hulls at
different deadrise angles, wetted length-to-beam ratios, and Froude numbers. The wave-making phenomenon
of planing hulls was also modeled by the present method. Comparison was made with experimental data and
other authors’ results, as well, and the good agreement between the 2 types of results verifies the reliability and
accuracy of the present numerical schemes in achieving converged solutions without imposing any restrictions
on either the aspect ratio or Froude number. On the whole, the present numerical method constitutes a useful
tool for a conceptual and preliminary design of planing hulls. With a few modifications, this method could also
be applied to different hull forms of planing crafts.
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Nomenclature

Aspray spray area
B breadth of the hull
b(y) distance between spray root and

centerline
CP pressure coefficient
CL lift coefficient
Cf local frictional coefficient
e solid angle
Fn length Froude number
F∇ volumetric Froude number
g gravitational acceleration
hz element immersion
G Green’s function
K0 wave number
L length of the hull
Lc chine wetted length
Li hydrodynamic lift
Lk keel wetted length
Ls hydrostatic lift
Lspray spray lift
NB total number of elements on the body
NF total number of elements on the free

surface
NT total number of elements
�n(nx, ny, nz) outward unit normal vector
P pressure
PS spray pressure
Ri induced drag
RF frictional drag
Rpq distance between the singular point p

to integration point q
R′

pq distance between the singular point p
to image integration point q ′

RSpray spray drag
RT total drag

SB surface of the body
SF surface of the free surface
C̄ij, Bij influence coefficient of source,

double on the body
Fij influence coefficient of double and

source on the free surface
T thrust of the propeller
�U inflow velocity
(u, v, w) local coordinate system
�vt induced velocity
�X(p) position vector
(x, y, z) global coordinate system

Greek Symbols

αs shaft angle
β deadrise angle
φ perturbation potential
ϕ∞ free stream velocity potential
φxx second derivative of the potential in

x-direction
Φ(x, y, z) total velocity potential
Φx, Φy, Φz derivative of velocity potential relative

to x-, y-, and z-directions
∂φ/∂n normal derivative of the velocity

potential
ζ(x, y) wave elevation
(ξ, η, ζ) coordinates of point q
(ξ′, η′, ζ′) coordinates of point q′

δij Kronecker delta function
σ source strength on each free surface

element
ρ density of the water
τ trim angle
∇φ differentiation of potential
Δ weight of the hull
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