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1 ABSTRACT

Three methods are described to simulate motions of planing boats in waves.
One is based on Wagner’s theory of hydrodynamic impacts, the others use the
Ranse solver Comet, applying different concepts to adapt the computational
grid to the boat motions. Comparisons with published experiments are used
for validation and to demonstrate the difficulties of both experiments and
simulations in evaluating the highly nonlinear responses in case of very high
speed (Froude number ~ 4).

2 INTRODUCTION

The design of a planing boat requires a trade-off between calm water re-
sistance and seakeeping qualities. A fast hard-chine vessel with a flat bottom
has lower resistance than one having a deadrise. In waves, however, a flat
hull is one of the worst shapes to imagine, because large impact pressures
are generated when waves hit the bottom. The best deadrise angle depends
on expected waves and whether speed or comfort are more important, and it
should be larger at the bow where the relative vertical motion between boat
and water surface is larger than at the stern. Hydrodynamic calculations are
used both for powering and seakeeping predictions. Here three different meth-
ods for simulating the boat’s motions in waves are described and compared:
A method by S6ding based on an extension of Wagner’s (1932) theory, and
two different ways (one by Caponnetto, the other by Azcueta) of applying the
RANSE solver Comet to this problem.

The assumption that boat motions depend linearly on wave amplitude is
not valid for the very high speed case investigated here, even in waves of very
moderate steepness. Often the boat jumps completely out of the water, flying



over the next wave trough and perhaps also over one, two or more successive
wave crests. This leads to subharmonic motions, i.e. the motion period of the
boat is an integer multiple of the wave encounter period. In higher waves the
motions become chaotic.

3 THE WAGNER-TYPE METHOD
3.1 Basic equations

The vertical hydrodynamic force per length f on a boat section is deter-
mined by the “momentum equation” introduced to this problem by v. Karman
(1929) and Wagner (1932):

f=-k5(
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where p%c2 approximates the added mass per length (for ¢ see Fig. 1), V' is
downward velocity of the section relative to the water, and k is a correction
factor. The rise of the waver level T'—T, (Fig. 2) during immersion is approxi-
mated as 0.6A/c where A is the immersed section area. This implicit equation
for T' is solved by the iteration

¢j — (Ty — T;)/ tanaw — 0.6¢;

T =T+

(2)

For « (see Fig. 1), which influences the iteration but not the final result, the
approximation
& = arctan(2A4/c?) (3)

is used. « is also applied to reduce f for deep sections:

k=0.75(r/2 — a). (4)

The results of formulae (1-4) are compared to experimental results and
detailed flow computations in Figs. 2 and 3.

3.2 Sections with knuckles; emerging sections

When a section having a knuckle (Fig. 15) is immersed beyond the knuckle,
the flow separates from the section contour. To account for this approximately,
above the knuckle the section halfbreadth is modified according to the formula

% — 0.64 (1 - %) | (5)

where @y, follows from (3) for immersion up to the knuckle.

For emergence of sections (V' directed upward) further modifications are
made; however, these occured seldom in the cases investigated here due to the
aft trim in connection with the high forward speed.
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Fig. 2 Vertical force on wedges
depending on deadrise angle according
to formulae of v.  Karman (1929),
Wagner(1932), and formulae (1-5),
as well as computations of Dobrovol-
skaya (1969) and Mei et al. (1999).
C = ftan?a/pV3t. Without hydro-

static components.
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Fig. 4. Planing surface having
20° deadrise and 20° trim angle.
CL =lift/(stagnation  pressure

breadth?) depending on AR =(average
distance between transom and spray
root)/breadth. Experiments by Savitzky
(1964), computations by Zhao et al.
(1997), and results of (1-7).
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Fig. 1. Cross-section definitions
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Fig. 3. Vertical force on a circular
cylinder (radius R) depending on time
t since water contact, according to
formulae by v. Karman (1929), Wagner
(1932), and according to (1-5), as
well as computations by Mei et al.
(1999) and experiments of Campbell
and Weynberg (1980) and Armand
and Cointe (1987). C = fl/pV?*R
with [ =body length = 0.1lm. Without
hydrostatic components.
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Fig. 5. Planing surface like in Fig. 5.
CP = (distance between center of
lift and transom)/ (average distance
between transom and spray root).

3.3 Variable section shape and bodies with forward speed

For slender bodies with forward speed u in direction x, the time derivative
d/dt in (1) has to be substituted by the substantial derivative

D/Dt =0/0t — ud/ox. (6)

Also for V' the substantial derivative of the bottom depth relative to the
water surface has to be used. For lengthwise variable cross-sections an average



V' over section breadth is defined as

1DA D 1 DA A Dc
=————T-Ty)) =04—-—— b6——.

V=D il 0) = 04C T +065 5 (7)

Figs. 5 and 6 compare results of these formulae with experimental and com-

puted results for stationary planing.
3.4 Further details

From f (vertical force per length including buoyancy) the vertical pressure
force and the pitch moment are integrated. Also the longitudinal pressure force
per length f, (excluding friction) can be approximated as f, = f/c - dA/dx.
These 3 force quantities allow to integrate the surge, heave and pitch motion.

To allow large time steps an implicit time integration scheme is applied.
From the results of the previous time and iteration steps the time-dependent
added mass matrix is determined as explained by Sdding (2001). This avoids
the necessity of force and moment fairing explained in 6.3. To start the sim-
ulation the boat is dropped from slightly above the water surface; this allows
to set the added mass matrix initially to zero.

The hull shape is approximated by 100 to 200 cross sections each described
by, typically, 150 halfbreadths between bottom and deck. This gives mesh-
independent results and computing times on a PC which are, roughly, equal
to or less than the simulated time span.

4 THE RANSE METHODS

The two other authors both used the Navier-Stokes solver Comet. It applies
a finite-volume method, allowing unstructured and block-structured meshes
with non-matching, sliding block interfaces. The mesh can move with time.
The momentum equations take account of the additional terms caused by
rotations and accelerations, and an additional “volume conservation equation”
takes account of mesh deformations. This avoids any interpolation of variables
from the old cell centres to the new ones. The free surface is accounted for by
a volume-of-fluid method, which is well suited to deal with spray, breaking and
overturning waves, detachment and reattachment of the flow along the chine,
and — to some extent — with ventilation. The solution domain covers both the
water and air region. Turbulence (here of minor importance) is approximated
using a k-¢ model.

5 METHOD BY CAPONNETTO
5.1 Body motion

At each time step updated values for trim and sinkage are supplied to a
program to build the new mesh. The cell vertices on the external boundary
remain fixed, while those on the hull move rigidly with the hull. All other
vertices move by an appropriate fraction of the hull movements, keeping the



Fig. 6 (left). Computational mesh on
the body surface of a planing boat with
spray rails and propeller tunnels
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Fig. 7. Planing boat at different phases
of wave encounter
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same grid topology. Figs. 6 and 7 show an example of the body grid and of a
planing boat in 3 different phases of wave contounter, respectively.

5.2 Boundary and initial conditions; time step

Momentum and velocity are expressed in the inertial system. At the inlet
air, water or a mixture of both are blown in depending on the position of the
cell above, below or at the actual surface height. Within the water pressure
and velocity are enforced at the inlet corresponding to linear inviscid wave
theory with a simple non-linear adaptation, whereas the air speed and pressure
are kept constant at the inlet. Initially the free surface is flat, the flow has
uniform velocity (—wv,0,0), and the pressure is static. The wave amplitude is
then increased linearly from zero to H, in about one encounter period. The
integration over time is second-order implicit using results of 3 successive time
instants; the time step is kept constant = 0.15[/v.

5.3 Forces and moments calculation

At the end of each time step the pressure over the hull is known, giving the
vertical force and the pitch moment. Physically, due to added-mass effects the
force and moment depend on the acceleration which is still not known. To
avoid oscillations or instability, the computed force and moment are smoothed
over time using, for instance, the last 10 time instants. The smoothed force
and moment give the accelerations and thus the boat position at the next time
step.

6 METHOD BY AZCUETA
6.1 Body motion module

Here the mesh is rigid and fixed to the boat. Momentum and velocity com-
ponents refer to the boat-fixed reference system. A “body-motion module” is



linked and run simultaneously with the flow solver to update all flow variables,
boundary conditions and parameters of the numerical method.

To integrate in time the equations of motion a first-order explicit discreti-
sation method has shown to work well and is used preferably. To obtain the
rotation angles, the new orientation of the body is found by integrating the
unit vectors of the body-fixed coordinate system.

6.2 Numerical mesh and simulation set-up

For the planing boat model of Fig. 10 and Table 1, a single grid consisting
of 230000 control volumes for one of the two symmetric fluid flow regions was
generated using the ICEM-CFD Hexa mesh generator. The pitch radius of
gyration (not known from the experiments) was estimated as 0.2 L.

The computational domain is shown in Fig. 8. Fig. 9 shows a part of the
mesh. All outer planes except the back plane were specified as an inlet of
constant known velocity (boat speed in opposite direction plus orbital veloc-
ity of the incoming waves) and known void fraction distribution defining the
water and air regions. The aft flow-boundary was specified as a zero-gradient
boundary of known (hydrostatic) pressure distribution.

The challenge of these simulations is the high F,,, which causes difficulties
in generating the incident waves since the mean flow velocity due to the boat
forward speed is 2 to 3 orders of magnitude larger than the wave orbital veloc-
ity. Special care is to be taken in selecting appropriate aspect ratios of CVs to
avoid unphysical wave irregularities. Due to numerical diffusion the amplitude
of the wave hitting the boat is smaller, although the VOF method used here
produces surprisingly good results on relatively coarse meshes.
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Fig. 8. Power boat model jumping in  Fig. 9. Numerical mesh around hull
oblique waves at a speed of 9m/s. viewed from the side.

The computational grid moves together with the boat, causing large mo-
tions of the water surface relative to the grid along the outer flow boundaries.
Therefore the boundary conditions — the mean flow velocity, the orbital veloc-
ity, the void fraction distribution defining the wave elevations, the turbulence
parameters and so on — have to be very carefully imposed at each time instant
relative to the undisturbed waterplane. The VOF method and the imple-
mented boundary conditions proved to be very robust: The free surface may,



e.g., intersect the top face of the outer boundary in case of large pitch or roll
angle. Even capsizing of the boat may be handled by this method.

7 VALIDATION

For validating the 3 calculation methods we use experiments by Katayama et
al. (2000). The shape of their small model is described by Table 1 and Fig. 10.
The model was towed with constant speed U at the center of gravity GG; thus at
G the surge motion was suppressed. The same was enforced in the simulations.
The heave motion refers to G. In the experiments the model, floating initially
in equilibrium condition, was accelerated within a very short time to the test
speed. This differs from the starting procedure of the simulations and may have
influenced the final, periodical motions in several of the cases investigated.

Table 1. Model data 05 ship sections 10 9 876

length Los 0.625m | breadth B 0.250m
length L,, 0.600m

\

depth D 0.106m | draft d 0.059m
deadrise /3 22° | mass m 4.28kg
KG 0.111m | LCG—trans. 0.285m

Fig. 10. Body plan of model

Fig. 11 shows nondimensional heave (maximum — minimum heave Z(t)
over wave height H, = 2 - wave amplitude) plotted as a function of wave
height made non-dimensional by dividing it by the draft at rest d = .059m.
The boat sails in a regular wave of length A = 1.556m at F, = 1.21 which is
a typical Froude number for planing boats. For the same case Fig. 12 gives
nondimensional pitch = maximum — minimum pitch angle 7}, divided by the
(linear) wave slope double amplitude K H,, where K is wave number. The
results apply to the stationary oscillation (limit cycle) of wave encounter
period after the transients have died-out.
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Fig. 11. Nondimensional heave over Fig. 12. Nondimensional pitch over
wave height; A/Loa = 2.49, Fp = 1.21. wave height; A/Loa = 2.49, F, = 1.21.

Corresponding results for the same wave length 1.556m but much higher
F, = 3.63 (model speed 9m/s) are shown in Figs. 13 and 14. Here the ship
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Fig. 13. Nondimensional heave over  Fig. 14. Nondimensional pitch over wave
wave height; A\/Loa = 2.49, F,, = 3.63.  height; A/Loa = 2.49, F, = 3.63.

motions converge to a stationary oscillation of wave encounter frequency only
for very low wave height. For somewhat larger wave height the motion repeats
after twice the encounter period. According to the experiments the transition
from single- to double-period motions seems to occur below H, /d = 1. Also
the Ranse simulation showed a double-period response for H,/d = 0.8. In
the Wagner-type simulations, however, single-period motions were found until
about H,/d = 1.4 but not beyond. Between H,/d = 1.2 and 1.4 both single-
period and double-period responses were found as limit cycles, depending on
the initial drop conditions of the model. According to the latter simulations
there is no smooth increase of the nondimensional motion transfer functions
with wave height; instead, if two-period motions occur as the limit cycle, they
have much larger amplitudes than the single-period responses. Occasionally
also two different two-period limit cycles are found for the same wave and speed
conditions but different initial conditions. Further, the distinction between
one-period and two-period limit cycles is not always clear: sometimes even
and odd cycles of wave encounter period differ only slightly from each other.
The transition from an initial near-periodic response to the limit cycle may
also appear after long times which may be too long for the experiments or
Ranse simulations to discover it (Fig. 15).

For the experiments Katayama et al. reported irregular motions for H,,/d >
0.7. That could be understood as chaotic motions. In the Wagner-type simula-
tions, however, two-period responses were found up to about H,,/d = 1.35, and
chaotic motions appeared only for H,/d > 1.63. Because in some experiments
the wave tracks shown by the authors are far from sinusoidal, Wagner-type
simulations were performed also in slightly perturbated waves (Fig. 16). This
small irregularity, which appears much smaller than that shown in the exper-
iments, produced, e.g. at H,/d = 1 (Figs. 13, 14), dramatic changes in the
responses, and it lowered the range were double-period responses were found.
Thus the irregular measured motions may have been influenced by irregulari-
ties of the very flat waves.

All the above referred to waves of a single length A = 2.49L5 4. Figs. 17 and



Fig. 15 (left). Simulated heave motions
(Wagner-type method) in regular waves
of 1.556m length for wave heights of
7.lcm (bottom), 7.55cm (middle) and
8.25cm (top). Different time scales (ab-
szissa).

Fig. 16. Wave track with perturbation

18, on the other hand, show measured and simulated non-dimensional heave
and pitch for variable (greater) wave length for a single wave height of 2cm.
The large measured responses near A/ L4 = 5.5) occur for an encounter period
T, = 0.30s which is not far from the natural pitch period measured for the same
F,, = 3.63. In the Wagner-type simulations no sharp peak response was found,
neither with regular nor with the disturbed waves, whereas both Ranse simula-
tions gave results between the experiments and the Wagner-type simulations.
For 4cm wave height the experiments showed a peak at a shorter wavelengh
A/ Loa = 3. Also that peak was not found in the simulations (Figs. 19, 20);
however, the Ranse simulations by the Caponnetto method correspond better
to the experiments than the Wagner-type simulations. (Actually the Ranse
simulation for A\/Lpa = 3.6 was performed for 3 instead of 4 cm wave height.)
In all the simulations of Figs. 17-20 the responses were periodic with the wave
encounter period.

Fig. 21 shows average trim angle and standard deviation of pitch angle
in natural long-crested head seaways containing wavelengths between about
0.95m and 2.3m, with maximum energy at about 1.6m wavelength. Here
both the average trim and the standard deviation of pitch change continuously
with significant wave height. Unfortunately no experimental data or RANSE
simulations in irregular waves are available for comparison; the latter require
prohibitively long CPU time.

8 CONCLUSIONS

1. Because the motions of planing boats in waves are highly nonlinear even
for small wave steepness, nonlinear simulations are the appropriate tool for
predicting the motions of planing boats in waves.

2. For the very high Froude numbers investigated here, even in quite
flat waves the boat experiences subharmonic motions often accompanied with
jumping over one or more wave crests.
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3. A simple, fast simulation method based on a Wagner-type approach for
the forces on the boat’s cross-sections results in motion predictions which are
not fully satisfactory but nonetheless appear useful.

4. Simulations using the Ranse solver Comet (a finite volume method using
the volume-of-fluid method to deal with the free surface) show a fair degree of
robustness and reasonable coincidence with the experimental results.

5. In many cases the limit cycles appear only after a time span which
appears too long both for tank experiments and for Ranse simulations.

6. Also due to the sensitivity of the responses to wave irregularities reliable
measurements in regular waves are unusually difficult.

7. Different limit cycles for the same model and wave conditions but differ-
ent initial conditions make both measurements and simulations, to a certain
degree, a matter of random.

8. These difficulties are avoided if tests and fast-running simulations are
performed in natural irregular seaways.
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